Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.038
Filtrar
1.
Virol J ; 21(1): 89, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641810

RESUMO

Coxsackievirus-A10 (CV-A10), responsible for the hand, foot and mouth disease (HFMD) pandemic, could cause serious central nervous system (CNS) complications. The underlying molecular basis of CV-A10 and host interactions inducing neuropathogenesis is still unclear. The Hippo signaling pathway, historically known for a dominator of organ development and homeostasis, has recently been implicated as an immune regulator. However, its role in host defense against CV-A10 has not been investigated. Herein, it was found that CV-A10 proliferated in HMC3 cells and promoted the release of inflammatory cytokines. Moreover, pattern recognition receptors (PRRs)-mediated pathways, including TLR3-TRIF-TRAF3-TBK1-NF-κB axis, RIG-I/MDA5-MAVS-TRAF3-TBK1-NF-κB axis and TLR7-MyD88-IRAK1/IRAK4-TRAF6-TAK1-NF-κB axis, were examined to be elevated under CV-A10 infection. Meanwhile, it was further uncovered that Hippo signaling pathway was inhibited in HMC3 cells with CV-A10 infection. Previous studies have been reported that there exist complex relations between innate immune and Hippo signaling pathway. Then, plasmids of knockdown and overexpression of MST1/2 were transfected into HMC3 cells. Our results showed that MST1/2 suppressed the levels of inflammatory cytokines via interacting with TBK1 and IRAK1, and also enhanced virus production via restricting IRF3 and IFN-ß expressions. Overall, these data obviously pointed out that CV-A10 accelerated the formation of neuroinflammation by the effect of the Hippo pathway on the PRRs-mediated pathway, which delineates a negative immunoregulatory role for MST1/2 in CV-A10 infection and the potential for this pathway to be pharmacologically targeted to treat CV-A10.


Assuntos
Benzenoacetamidas , Infecções por Coxsackievirus , NF-kappa B , Piperidonas , Humanos , NF-kappa B/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Doenças Neuroinflamatórias , Imunidade Inata , Citocinas/metabolismo
2.
Immun Inflamm Dis ; 12(4): e1237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577984

RESUMO

BACKGROUND: Severe myocarditis is often accompanied by cardiac fibrosis, but the underlying mechanism has not been fully elucidated. CXCL4 is a chemokine that has been reported to have pro-inflammatory and profibrotic functions. The exact role of CXCL4 in cardiac fibrosis remains unclear. METHODS: Viral myocarditis (VMC) models were induced by intraperitoneal injection of Coxsackie B Type 3 (CVB3). In vivo, CVB3 (100 TCID50) and CVB3-AMG487 (CVB3: 100 TCID50; AMG487: 5 mg/kg) combination were administered in the VMC and VMC+AMG487 groups, respectively. Hematoxylin and eosin staining, severity score, Masson staining, and immunofluorescence staining were performed to measure myocardial morphology in VMC. Enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were performed to quantify inflammatory factors (IL-1ß, IL-6, TNF-α, and CXCL4). Aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and creatine kinase-myocardial band (CK-MB) levels were analyzed by commercial kits. CXCL4, CXCR3B, α-SMA, TGF-ß1, Collagen I, and Collagen III were determined by Western blot and immunofluorescence staining. RESULTS: In vivo, CVB3-AMG487 reduced cardiac injury, α-SMA, Collagen I and Collagen III levels, and collagen deposition in VMC+AMG487 group. Additionally, compared with VMC group, VMC+AMG group decreased the levels of inflammatory factors (IL-1ß, IL-6, and TNF-α). In vitro, CXCL4/CXCR3B axis activation TGF-ß1/Smad2/3 pathway promote mice cardiac fibroblasts differentiation. CONCLUSION: CXCL4 acts as a profibrotic factor in TGF-ß1/Smad2/3 pathway-induced cardiac fibroblast activation and ECM synthesis, and eventually progresses to cardiac fibrosis. Therefore, our findings revealed the role of CXCL4 in VMC and unveiled its underlying mechanism. CXCL4 appears to be a potential target for the treatment of VMC.


Assuntos
Acetamidas , Infecções por Coxsackievirus , Miocardite , Pirimidinonas , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa , Interleucina-6 , Colágeno , Fibrose
3.
Sci Adv ; 10(10): eadl1122, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446892

RESUMO

Coxsackievirus B (CVB) infection of pancreatic ß cells is associated with ß cell autoimmunity and type 1 diabetes. We investigated how CVB affects human ß cells and anti-CVB T cell responses. ß cells were efficiently infected by CVB in vitro, down-regulated human leukocyte antigen (HLA) class I, and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized a fraction of these peptides; only another subfraction was targeted by effector/memory T cells that expressed exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with ß cell antigen GAD. Infected ß cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Our in vitro and ex vivo data highlight limited CD8+ T cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and nonstructural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.


Assuntos
Infecções por Coxsackievirus , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Linfócitos T CD8-Positivos , Anticorpos , Epitopos , Peptídeos , Antivirais
4.
Medicine (Baltimore) ; 103(10): e37248, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457543

RESUMO

INTRODUCTION: In rare occasions, coxsackievirus infections can cause serious illness, such as encephalitis and myocarditis. The immunotherapies of cancer could increase the risk of myocarditis, especially when applying immune checkpoint inhibitors. Herein, we report a rare case of Coxsackie B virus-induced myocarditis in a patient with a history of lymphoma. CASE PRESENTATION: A 32-year-old woman was admitted to the hospital with recurrent fever for more than 20 days, and she had a history of lymphoma. Before admission, the positron emission tomography/computed tomography result indicated that the patient had no tumor progression, and she was not considered the cancer-related fever upon arriving at our hospital. Patient's red blood cell, platelet count, and blood pressure were decreased. In addition, she had sinus bradycardia and 3 branch blocks, which was consistent with acute high lateral and anterior wall myocardial infarction. During hospitalization, the patient had recurrent arrhythmia, repeated sweating, poor mentation, dyspnea, and Coxsackie B virus were detected in patient's blood samples by pathogen-targeted next-generation sequencing. The creatine kinase, creatine kinase MB, and N-terminal pro-brain natriuretic peptide were persistently elevated. Consequently, the patient was diagnosed with viral myocarditis induced by Coxsackie B virus, and treated with acyclovir, gamma globulin combined with methylprednisolone shock therapy, trimetazidine, levosimendan, sildenan, continuous pump pressors with m-hydroxylamine, entecavir, adefovir, glutathione, pantoprazole, and low-molecular-weight heparin. Her symptoms worsened and died. CONCLUSION: We reported a case with a history of lymphoma presented with fever, myocardial injury, who was ultimately diagnosed with Coxsackie B virus-induced myocarditis. Moreover, pathogen-targeted next-generation sequencing indeed exhibited higher sensitivity compared to mNGS in detecting Coxsackie B virus.


Assuntos
Infecções por Coxsackievirus , Linfoma , Miocardite , Viroses , Humanos , Feminino , Adulto , Miocardite/diagnóstico , Miocardite/etiologia , Enterovirus Humano B , Infecções por Coxsackievirus/complicações , Infecções por Coxsackievirus/diagnóstico , Febre
5.
Front Immunol ; 15: 1374796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550582

RESUMO

For many decades viral infections have been suspected as 'triggers' of autoimmune disease, but mechanisms for how this could occur have been difficult to establish. Recent studies have shown that viral infections that are commonly associated with viral myocarditis and other autoimmune diseases such as coxsackievirus B3 (CVB3) and SARS-CoV-2 target mitochondria and are released from cells in mitochondrial vesicles that are able to activate the innate immune response. Studies have shown that Toll-like receptor (TLR)4 and the inflammasome pathway are activated by mitochondrial components. Autoreactivity against cardiac myosin and heart-specific immune responses that occur after infection with viruses where the heart is not the primary site of infection (e.g., CVB3, SARS-CoV-2) may occur because the heart has the highest density of mitochondria in the body. Evidence exists for autoantibodies against mitochondrial antigens in patients with myocarditis and dilated cardiomyopathy. Defects in tolerance mechanisms like autoimmune regulator gene (AIRE) may further increase the likelihood of autoreactivity against mitochondrial antigens leading to autoimmune disease. The focus of this review is to summarize current literature regarding the role of viral infection in the production of extracellular vesicles containing mitochondria and virus and the development of myocarditis.


Assuntos
Doenças Autoimunes , Infecções por Coxsackievirus , Vesículas Extracelulares , Miocardite , Humanos , Autoimunidade , Enterovirus Humano B , Mitocôndrias/metabolismo , Vesículas Extracelulares/metabolismo
6.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339075

RESUMO

Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the infectious triggers of these diseases. Indeed, TCR sequences mimicking coxsackieviruses, which are implicated as triggers of both diseases, are statistically significantly increased in both T1DM and AM patients. However, TCRs mimicking Clostridia antigens are significantly expanded in T1DM, whereas TCRs mimicking Streptococcal antigens are expanded in AM. Notably, Clostridia antigens mimic T1DM autoantigens, such as insulin and glutamic acid decarboxylase, whereas Streptococcal antigens mimic cardiac autoantigens, such as myosin and laminins. Thus, T1DM may be triggered by combined infections of coxsackieviruses with Clostridia bacteria, while AM may be triggered by coxsackieviruses with Streptococci. These TCR results are consistent with both epidemiological and clinical data and recent experimental studies of cross-reactivities of coxsackievirus, Clostridial, and Streptococcal antibodies with T1DM and AM antigens. These data provide the basis for developing novel animal models of AM and T1DM and may provide a generalizable method for revealing the etiologies of other autoimmune diseases. Theories to explain these results are explored.


Assuntos
Doenças Autoimunes , Infecções por Coxsackievirus , Diabetes Mellitus Tipo 1 , Enterovirus , Miocardite , Infecções Estreptocócicas , Animais , Humanos , Doenças Autoimunes/complicações , Infecções por Coxsackievirus/complicações , Autoantígenos , Streptococcus , Infecções Estreptocócicas/complicações , Antígenos de Bactérias , Receptores de Antígenos de Linfócitos T
7.
JAMA Ophthalmol ; 142(1): e234721, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236264

RESUMO

This case report describes a diagnosis of unilateral retinopathy secondary to coxsackie B virus in a male patient aged 41 years who presented with a central scotoma and blistering rash of the hands, feet, and mouth for 4 days.


Assuntos
Infecções por Coxsackievirus , Infecções por Herpesviridae , Doenças Retinianas , Humanos , Doenças Retinianas/diagnóstico , Doenças Retinianas/etiologia , Masculino , Adulto , Escotoma/etiologia , Infecções por Coxsackievirus/complicações , Doença de Mão, Pé e Boca
8.
J Virol ; 98(2): e0150423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289119

RESUMO

Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.


Assuntos
Regiões 5' não Traduzidas , Infecções por Coxsackievirus , Enterovirus Humano B , Interações entre Hospedeiro e Microrganismos , MicroRNAs , Biossíntese de Proteínas , RNA Viral , Animais , Humanos , Camundongos , Regiões 5' não Traduzidas/genética , Antivirais/metabolismo , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidade , Enterovirus Humano B/fisiologia , Células HeLa , Intestino Delgado/metabolismo , Intestino Delgado/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Tropismo Viral/genética , Replicação Viral/genética , Cisteína Endopeptidases/metabolismo , Protocaderinas/deficiência , Protocaderinas/genética , Miocardite , Interações entre Hospedeiro e Microrganismos/genética
9.
J Virol ; 98(2): e0174923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38189249

RESUMO

Enterovirus 71 (EV71) is one of the major pathogens causing hand, foot, and mouth disease in children under 5 years old, which can result in severe neurological complications and even death. Due to limited treatments for EV71 infection, the identification of novel host factors and elucidation of mechanisms involved will help to counter this viral infection. N-terminal acetyltransferase 6 (NAT6) was identified as an essential host factor for EV71 infection with genome-wide CRISPR/Cas9 screening. NAT6 facilitates EV71 viral replication depending on its acetyltransferase activity but has little effect on viral release. In addition, NAT6 is also required for Echovirus 7 and coxsackievirus B5 infection, suggesting it might be a pan-enterovirus host factor. We further demonstrated that NAT6 is required for Golgi integrity and viral replication organelle (RO) biogenesis. NAT6 knockout significantly inhibited phosphatidylinositol 4-kinase IIIß (PI4KB) expression and PI4P production, both of which are key host factors for enterovirus infection and RO biogenesis. Further mechanism studies confirmed that NAT6 formed a complex with its substrate actin and one of the PI4KB recruiters-acyl-coenzyme A binding domain containing 3 (ACBD3). Through modulating actin dynamics, NAT6 maintained the integrity of the Golgi and the stability of ACBD3, thereby enhancing EV71 infection. Collectively, these results uncovered a novel mechanism of N-acetyltransferase supporting EV71 infection.IMPORTANCEEnterovirus 71 (EV71) is an important pathogen for children under the age of five, and currently, no effective treatment is available. Elucidating the mechanism of novel host factors supporting viral infection will reveal potential antiviral targets and aid antiviral development. Here, we demonstrated that a novel N-acetyltransferase, NAT6, is an essential host factor for EV71 replication. NAT6 could promote viral replication organelle (RO) formation to enhance viral replication. The formation of enterovirus ROs requires numerous host factors, including acyl-coenzyme A binding domain containing 3 (ACBD3) and phosphatidylinositol 4-kinase IIIß (PI4KB). NAT6 could stabilize the PI4KB recruiter, ACBD3, by inhibiting the autophagy degradation pathway. This study provides a fresh insight into the relationship between N-acetyltransferase and viral infection.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Acetiltransferases N-Terminal , Fosfotransferases (Aceptor do Grupo Álcool) , Criança , Pré-Escolar , Humanos , 1-Fosfatidilinositol 4-Quinase/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antivirais , Coenzima A/metabolismo , Infecções por Coxsackievirus , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Proteínas de Membrana/metabolismo , Acetiltransferases N-Terminal/metabolismo , Biogênese de Organelas , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Replicação Viral/fisiologia
10.
Free Radic Biol Med ; 212: 349-359, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38169212

RESUMO

BACKGROUND: Dysregulated cell death machinery and an excessive inflammatory response in Coxsackievirus B3(CVB3)-infected myocarditis are hallmarks of an abnormal host response. Complement C4 and C3 are considered the central components of the classical activation pathway and often participate in the response process in the early stages of virus infection. METHODS: In our study, we constructed a mouse model of CVB3-related viral myocarditis via intraperitoneal injection of Fer-1 and detected myocarditis and ferroptosis markers in the mouse myocardium. Then, we performed co-IP and protein mass spectrometry analyses to explore which components interact with the ferroptosis gene transferrin receptor (TFRC). Finally, functional experiments were conducted to verify the role of complement components in regulating ferroptosis in CVB3 infection. RESULTS: It showed that the ferroptosis inhibitor Fer-1 could alleviate the inflammation in viral myocarditis as well as ferroptosis. Mechanistically, during CVB3 infection, the key factor TFRC was activated and inhibited by Fer-1. Fer-1 effectively prevented the consumption of complement C3 and overload of the complement product C4b. Interestingly, we found that TFRC directly interacts with complement C4, leading to an increase in the product of C4b and a decrease in the downstream complement C3. Functional experiments have also confirmed that regulating the complement C4/C3 pathway can effectively rescue cell ferroptosis caused by CVB3 infection. CONCLUSIONS: In this study, we found that ferroptosis occurs through crosstalk with complement C4 in viral myocarditis through interaction with TFRC and that regulating the complement C4/C3 pathway may rescue ferroptosis in CVB3-infected cardiomyocytes.


Assuntos
Infecções por Coxsackievirus , Ferroptose , Miocardite , Viroses , Animais , Camundongos , Miocardite/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Complemento C3/farmacologia , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/metabolismo , Enterovirus Humano B/metabolismo , Miocárdio/metabolismo , Fatores Imunológicos/farmacologia , Complemento C4/metabolismo , Complemento C4/farmacologia , Receptores da Transferrina
11.
Int Immunopharmacol ; 127: 111304, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38091826

RESUMO

Acute viral myocarditis can progress to chronic myocarditis leading to dilated cardiomyopathy (DCM). Persistent CD4+ T-cell-mediated autoimmunity triggered by infection plays a critical role in this progression. Increasing evidence demonstrates that effector memory CD4+T (CD4+TEM) cells, a subset of memory CD4+ T cells, are crucial pathogenic mediators of many autoimmune diseases. However, the role of CD4+TEM cells during the progression from acute viral myocarditis to DCM remains unknown. In this study, we observed an increase in CD4+TEM cells both in the periphery and the heart, and memory CD4+ T cells were the predominant sources of IL-17A and IFN-γ among inflamed heart-infiltrating CD4+ T cells during the progression from acute myocarditis to chronic myocarditis and DCM in CVB3-induced BALB/c mice. Moreover, splenic CD4+TEM cells sorted from DCM mice induced by CVB3 were found to respond to cardiac self-antigens ex vivo. Additionally, adoptive transfer experiments substantiated their pathogenic impact, inducing sustained myocardial inflammation, tissue fibrosis, cardiac injury, and impairment of cardiac systolic function in vivo. Our findings illustrate that long-lived CD4+TEM cells are important contributors to the progression from acute viral myocarditis into DCM.


Assuntos
Doenças Autoimunes , Cardiomiopatia Dilatada , Infecções por Coxsackievirus , Miocardite , Camundongos , Animais , Cardiomiopatia Dilatada/patologia , Linfócitos T/patologia , Camundongos Endogâmicos BALB C , Miocárdio/patologia , Infecções por Coxsackievirus/complicações , Enterovirus Humano B
12.
Antiviral Res ; 221: 105781, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097049

RESUMO

Coxsackievirus B6 (CVB6), a member of the human enterovirus family, is associated with severe diseases such as myocarditis in children. However, to date, only a limited number of CVB6 strains have been identified, and their characterization in animal models has been lacking. To address this gap, in this study, a neonatal murine model of CVB6 infection was established to compare the replication and virulence of three infectious-clone-derived CVB6 strains in vivo. The results showed that following challenge with a lethal dose of CVB6 strains, the neonatal mice rapidly exhibited a series of clinical signs, such as weight loss, limb paralysis, and death. For the two high-virulence CVB6 strains, histological examination revealed myocyte necrosis in skeletal and cardiac muscle, and immunohistochemistry confirmed the expression of CVB6 viral protein in these tissues. Real-time PCR assay also revealed higher viral loads in the skeletal and cardiac muscle than in other tissues at different time points post infection. Furthermore, the protective effect of passive immunization with antisera and a neutralizing monoclonal antibody against CVB6 infection was evaluated in the neonatal mouse model. This study should provide insights into the pathogenesis of CVB6 and facilitate further research in the development of vaccines and antivirals against CVBs.


Assuntos
Infecções por Coxsackievirus , Enterovirus , Criança , Animais , Camundongos , Humanos , Modelos Animais de Doenças , Virulência , Enterovirus Humano B , Anticorpos Neutralizantes/uso terapêutico , Camundongos Endogâmicos C57BL , Antivirais/farmacologia , Antivirais/uso terapêutico
13.
Virus Res ; 339: 199250, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37865350

RESUMO

Evidence is emerging on the roles of long noncoding RNAs (lncRNAs) as regulatory factors in a variety of viral infection processes, but the mechanisms underlying their functions in coxsackievirus group B type3 (CVB3)-induced acute viral myocarditis have not been explicitly delineated. We previously demonstrated that CVB3 infection decreases miRNA-21 expression; however, lncRNAs that regulate the miRNA-21-dependent CVB3 disease process have yet to be identified. To evaluate lncRNAs upstream of miRNA-21, differentially expressed lncRNAs in CVB3-infected mouse hearts were identified by microarray analysis and lncRNA/miRNA-21 interactions were predicted bioinformatically. MEG3 was identified as a candidate miRNA-21-interacting lncRNA upregulated in CVB3-infected mouse hearts. MEG3 expression was verified to be upregulated in HeLa cells 48 h post CVB3 infection and to act as a competitive endogenous RNA of miRNA-21. MEG3 knockdown resulted in the upregulation of miRNA-21, which inhibited CVB3 replication by attenuating P38-MAPK signaling in vitro and in vivo. Knockdown of MEG3 expression before CVB3 infection inhibited viral replication in mouse hearts and alleviated cardiac injury, which improved survival. Furthermore, the knockdown of CREB5, which was predicted bioinformatically to function upstream of MEG3, was demonstrated to decrease MEG3 expression and CVB3 viral replication. This study identifies the function of the lncRNA MEG3/miRNA-21/P38 MAPK axis in the process of CVB3 replication, for which CREB5 could serve as an upstream modulator.


Assuntos
Infecções por Coxsackievirus , Enterovirus , MicroRNAs , Miocardite , RNA Longo não Codificante , Viroses , Animais , Humanos , Camundongos , Infecções por Coxsackievirus/complicações , Infecções por Coxsackievirus/genética , Enterovirus/genética , Enterovirus Humano B/genética , Enterovirus Humano B/metabolismo , Células HeLa/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , Miocardite/genética , Miocardite/metabolismo , Miocardite/virologia , RNA Longo não Codificante/genética , Replicação Viral
14.
Viruses ; 15(10)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896753

RESUMO

Appendix has a distinct abundance of lymphatic cells and serves as a reservoir of microbiota which helps to replenish the large intestine with healthy flora. And it is the primary site of IgA induction, which shapes the composition of the intestinal microbiota. Recent population-based cohort studies report that appendectomy is associated with an increased risk of acute myocardial infarction and ischemic heart disease. Here, whether appendectomy has an effect on the occurrence and development of coxsackievirus B3 (CVB3)-induced viral myocarditis is studied. 103 TCID50 CVB3 was inoculated i.p. into appendectomized and sham-operated mice. RNA levels of viral load and pro-inflammatory cytokines in the hearts and the intestine were detected by RT-PCR. Compared to sham-operated mice, appendectomized mice exhibited attenuated cardiac inflammation and improved cardiac function, which is associated with a systemic reduced viral load. Appendectomized mice also displayed a reduction in cardiac neutrophil and macrophage infiltration and pro-inflammatory cytokine production. Mechanistically, we found that CVB3 induced an early and potent IL-10 production in the cecal patch at 2 days post infection. Appendectomy significantly decreased intestinal IL-10 and IL-10+ CD4+ Treg frequency which led to a marked increase in intestinal (primary entry site for CVB3) anti-viral IFN-γ+ CD4+ T and IFN-γ+ CD8+ T response and viral restriction, eventually resulting in improved myocarditis. Our results suggest that appendix modulates cardiac infection and inflammation through regulating intestinal IL-10+ Treg response.


Assuntos
Infecções por Coxsackievirus , Miocardite , Humanos , Camundongos , Animais , Interleucina-10 , Apendicectomia , Inflamação/complicações , Enterovirus Humano B/genética , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
15.
J Virol ; 97(11): e0107523, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37847581

RESUMO

IMPORTANCE: Coxsackievirus A6 (CV-A6) is a major emerging pathogen associated with atypical hand, foot, and mouth disease and can cause serious complications such as encephalitis, acute flaccid paralysis, and neurorespiratory syndrome. Therefore, revealing the associated pathogenic mechanisms could benefit the control of CV-A6 infections. In this study, we demonstrate that the nonstructural 2CCV-A6 suppresses IFN-ß production, which supports CV-A6 infection. This is achieved by depleting RNA sensors such as melanoma differentiation-associated gene 5 and retinoic acid-inducible gene I (RIG-I) through the lysosomal pathway. Such a function is shared by 2CEV-A71 and 2CCV-B3 but not 2CCV-A16, suggesting the latter might have an alternative way to promote viral replication. This study broadens our understanding of enterovirus 2C protein regulation of the RIG-I-like receptor signaling pathway and reveals a novel mechanism by which CV-A6 and other enteroviruses evade the host innate immune response. These findings on 2C may provide new therapeutic targets for the development of effective inhibitors against CV-A6 and other enterovirus infections.


Assuntos
Infecções por Coxsackievirus , Humanos , Enterovirus Humano A/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Doença de Mão, Pé e Boca/virologia , Imunidade Inata , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Interferon beta/metabolismo
17.
Free Radic Biol Med ; 208: 430-444, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37660839

RESUMO

Exploring the immune mechanism of coxsackievirus B3 (CVB3)-induced myocarditis may provide a promising therapeutic strategy. Here, we investigated the regulatory role of macrophage CAPN4 in the phenotypic transformation of macrophages and NOD-like receptor protein 3 (NLRP3) inflammasome activation. We found that CAPN4 was the most upregulated subtype of the calpain family in CVB3-infected bone marrow-derived macrophages (BMDMs) and Raw 264.7 cells after CVB3 infection and was upregulated in cardiac macrophages from CVB3-infected mice. Conditional knockout of CAPN4 (CAPN4flox/flox; LYZ2-Cre, CAPN4-cKO mice) ameliorated inflammation and myocardial injury and improved cardiac function and survival after CVB3 infection. Enrichment analysis revealed that macrophage differentiation and the interleukin signaling pathway were the most predominant biological processes in macrophages after CVB3 infection. We further found that CVB3 infection and the overexpression of CAPN4 promoted macrophage M1 polarization and NLRP3 inflammasome activation, while CAPN4 knockdown reversed these changes. Correspondingly, CAPN4-cKO alleviated CVB3-induced M1 macrophage transformation and NLRP3 expression and moderately increased M2 transformation in vivo. The culture supernatant of CAPN4-overexpressing or CVB3-infected macrophages impaired cardiac fibroblast function and viability. Moreover, macrophage CAPN4 could upregulate C/EBP-homologous protein (chop) expression, which increased proinflammatory cytokine release by activating the phosphorylation of transducer of activator of transcription 1 (STAT1) and 3 (STAT3). Overall, these results suggest that CAPN4 increases M1-type and inhibits M2-type macrophage polarization through the chop-STAT1/STAT3 signaling pathway to mediate CVB3-induced myocardial inflammation and injury. CAPN4 may be a novel target for viral myocarditis treatment.


Assuntos
Infecções por Coxsackievirus , Inflamassomos , Miocardite , Animais , Camundongos , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/metabolismo , Enterovirus Humano B/metabolismo , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Miocardite/genética , Miocardite/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo
18.
Viruses ; 15(9)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37766275

RESUMO

Coxsackievirus A5 (CV-A5) is a re-emerging enterovirus that causes hand, foot, and mouth disease in children under five years of age. CV-A5-M14-611 is a mouse-adapted strain that can infect orally and lead to the death of 14-day-old mice. Here, recombinants based on CV-A5-M14-611 were constructed carrying three reporter genes in different lengths. Smaller fluorescent marker proteins, light, oxygen, voltage sensing (iLOV), and nano luciferase (Nluc) were proven to be able to express efficiently in vitro. However, the recombinant with the largest insertion of the red fluorescence protein gene (DsRed) was not rescued. The construction strategy of reporter viruses was to insert the foreign genes between the C-terminus of VP1 and the N-terminus of 2A genes and to add a 2A protease cleavage domain at both ends of the insertions. The iLOV-tagged or Nluc-tagged recombinants, CV-A5-iLOV or CV-A5-Nluc, exhibited a high capacity for viral replication, genetic stability in cells and pathogenicity in mice. They were used to establish a rapid, inexpensive and convenient neutralizing antibody assay and greatly facilitated virus neutralizing antibody titration. Living imaging was performed on mice with CV-A5-Nluc, which exhibited specific bioluminescence in virus-disseminated organs, while fluorescence induced by CV-A5-iLOV was weakly detected. The reporter-gene-tagged CV-A5 can be used to study the infection and mechanisms of CV-A5 pathogenicity in a mouse model. They can also be used to establish rapid and sensitive assays for detecting neutralizing antibodies.


Assuntos
Infecções por Coxsackievirus , Enterovirus , Criança , Camundongos , Animais , Humanos , Pré-Escolar , Enterovirus/genética , Luciferases , Genes Reporter , Fluorescência , Anticorpos Neutralizantes
19.
Microbes Infect ; 25(8): 105211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37574181

RESUMO

Viral myocarditis is an inflammatory disease of the myocardium, often leads to cardiac dysfunction and death. PARKIN (PRKN) and PINK1, well known as Parkinson's disease-associated genes, have been reported to be involved in innate immunity and mitochondrial damage control. Therefore, we investigated the role of parkin and PINK1 in coxsackievirus B3 (CVB3)-induced viral myocarditis because the etiology of myocarditis is related to abnormal immune response to viral infection and mitochondrial damage. After viral infection, the survival was significantly lower and myocardial damage was more severe in parkin knockout (KO) and PINK1 KO mice compared to wild-type (WT) mice. Parkin KO and PINK1 KO showed defective immune cell recruitment and impaired production of antiviral cytokines such as interferon-gamma, allowing increased viral replication. In addition, parkin KO and PINK1 KO mice were more susceptible to CVB3-induced mitochondrial damage than WT mice, resulting in susceptibility to viral-induced cardiac damage. Finally, using publicly available RNA-seq data, we found that pathogenic mutants of the PRKN gene are more common in patients with dilated cardiomyopathy and myocarditis than in controls or the general population. This study will help elucidate the molecular mechanism of CVB3-induced viral myocarditis.


Assuntos
Infecções por Coxsackievirus , Miocardite , Viroses , Animais , Humanos , Camundongos , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/patologia , Modelos Animais de Doenças , Enterovirus Humano B/genética , Camundongos Knockout , Miocardite/genética , Miocardite/patologia , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
20.
J Med Virol ; 95(8): e29004, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526413

RESUMO

Although most patients with acute viral myocarditis recover spontaneously, some patients progress to heart failure. Perturbations in innate immunity may partially explain the heterogeneity of clinical outcomes. As the most abundant immune cells in the heart, cardiac macrophages have heterogeneous origins, including embryonic-derived resident macrophages (ResMϕs) and monocyte-derived macrophages (MoMFs). However, the time course change and role of cardiac macrophage subsets has not been fully explored. In the present study, we found that BALB/c mice had prolonged MoMF accumulation and low proportions of ResMϕs that could not be restored to normal levels. MoMFs of BALB/c mice generally exhibit an M1-dominant functional phenotype. Moreover, the preferential depletion of MoMF by a C-C chemokine receptor type 2 (CCR2) inhibitor resulted in improved acute myocarditis and chronic fibrosis, as well as the recovery of ResMϕs number and reduced CD4+ T cell expansion. Hence, immunomodulatory therapy that targets the balance among cardiac macrophages and modulates their function is expected to prevent the progression of cardiac injury to overt heart failure and improve adverse outcomes.


Assuntos
Infecções por Coxsackievirus , Insuficiência Cardíaca , Miocardite , Camundongos , Animais , Enterovirus Humano B/fisiologia , Coração , Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...